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Towards Flexible and Adaptive Neural Process
for Cold-start Recommendation

Xixun Lin, Chuan Zhou*, Jia Wu, Lixin Zou, Shirui Pan, Yanan Cao, Bin Wang,
Shuaiqiang Wang, Dawei Yin

Abstract—Recommender systems have been widely adopted in various online personal e-commerce applications for improving user
experience. A long-standing challenge in recommender systems is how to provide accurate recommendation to users in cold-start
situations where only a few user-item interactions can be observed. Recently, meta learning methods provide a promising solution,
and most of them follow a way of parameter initialization where predictions can be fast adapted via multiple gradient descent steps.
While these meta-learning recommenders promote model performance, how to derive a fundamental paradigm that enables both
flexible approximations of complex user interaction distributions and effective task adaptations of global knowledge still remains a
critical yet under-explored problem. To this end, we present the Flow-based Adaptive Neural Process (FANP), a new probabilistic
meta-learning model where estimating the preference of each user is governed by an underlying stochastic process. Following an
encoder-decoder generative framework, FANP is an effective few-shot function estimator that directly maps limited user interactions
to a predictive distribution without complicated gradient updates. Through introducing a conditional normalization flow-based encoder,
FANP can get rid of the model bias on latent variables and thereby derive more flexible variational distributions. Meanwhile, we propose
a task-adaptive mechanism capturing the relevance of different tasks for improving adaptation ability of global knowledge. The learned
task-specific and task-relevant representations are simultaneously exploited to generate the decoder parameters via a novel modulation-
augmented hypernetwork. FANP is evaluated on both scenario-specific and user-specific cold-start recommendations on various real-
world datasets. Extensive experimental results and detailed model analyses demonstrate that our model yields superior performance
compared with multiple state-of-the-art meta-learning recommenders.

Index Terms—Cold-start Recommendation, Meta Learning, Neural Processes.

✦

1 INTRODUCTION

W ITH the rapid increase of quantity and category of
commodities, recommender systems have become a

prevalent research topic. The goal of recommender sys-
tems is to find a group of items that users are likely to
purchase in the near future by leveraging users’ historical
interactions. Among existing recommendation approaches,
deep learning-based recommenders achieve superior per-
formance compared with traditional recommenders, largely
due to the fact that they have a high-effective utilization
of a huge amount of interaction data to produce expressive
user and item representations. However, a common chal-
lenge of both deep learning-based and traditional recom-
menders is cold-start problem where only a few user-item
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interactions are available. To alleviate the cold-start effects,
previous works [2], [3], [4] concentrate on incorporating
additional contents, such as the side-information of users
and items into recommendation models. Although these
methods are useful, such informative contents can not be
always accessed owing to the privacy issues [5]. Another
possible solution is transfer learning-based methods [6], [7],
[8] which try to transfer shared features to sparse target
domains, but it usually has a stringent data requirement on
source domains.

Motivated by recent progress on meta learning [9], some
works [10], [11], [12], [13] have began to solve cold-start
problems from the view of meta learning. Specifically, they
treat making recommendations for different entities (like
users, scenarios) as tasks1. In the training phase, they try
to capture the global knowledge across different tasks as a
generalization prior. In the test phase, the recommendations
for new tasks can be completed by using only a few in-
teractions and the learned global knowledge. Most existing
meta-learning recommenders are built upon a gradient-
based method, i.e., MAML [14], which try to learn a pa-
rameter initialization where a few steps of gradient updates
can produce good recommendation performances for cold-
start entities. These methods achieve promising results to
some extent, but there are still two challenging problems
that seriously affect model performance: (1) They involve a
complex inner-loop gradient updates for both training and
test phases, leading to a heavy computational burdens [15].

1. The detailed definition is introduced in Section 3.
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TaNP [1] alleviates this issue by introducing a neural
processes-based framework [16] that directly approximates
the predictive posterior distribution with a conditional
distribution learned from very limited interactions [16].
TaNP consists of the fully feed-forward operations, which
sidesteps from the complex gradient calculations and some
training issues in MAML [17]. But the latent variable used
for approximating stochastic processes in TaNP is strictly
restricted as simple Gaussian distributions, which induces a
strong model bias making it difficult to fully capture diverse
user behaviours. (2) Most MAML-based recommenders typ-
ically assume that making recommendations of different
tasks are highly relevant. In fact, this model assumption
is not always established in real-world situations. When
entities show different purchase intentions or topics, the task
relevance among them is actually very weak, and finding a
shared model initialization that is optimal for all tasks is
ill-posed. Hence, capturing the task relevance is crucial to
adapt the global knowledge to different tasks effectively.

Following the principle of neural processes, we propose
the Flow-based Adaptive Neural Process (FANP) to jointly
solve above two important problems. Compared with pre-
vious works, our model builds a more flexible inference
mechanism that removes the restriction of Gaussian priors.
Concretely, FANP includes a novel flow-based encoder that
transforms the original latent variable into a more expres-
sive one via the proposed conditional normalization flow.
Furthermore, by leveraging on this non-Gaussian transfor-
mation, we also derive a flexible posterior distribution and
consider the maximum mean discrepancy (MMD)-based
penalty as an effective regularization. To improve adapta-
tion ability, we propose a novel task-adaptive mechanism
composed by a relevance module and an adaptive decoder.
In the relevance module, we first encode the observed
interactions in each task to a task-specific representation
which is further interacted with the global storage pool for
producing the soft clustering assignments. By combining the
storage pool with the generated clustering assignments, we
then derive a task-relevant representation to measure the
relevance of different tasks in a holistic manner. Finally, the
learned task-specific and task-relevant representations are
coupled with the proposed modulation-augmented hyper-
network to generate the model parameters of our adaptive
decoder for making personalized recommendations.

The main contributions of this paper are summarized
here:

• We propose a new flow-based encoder to learn the
more flexible variational distributions of latent variable
without relying on restrictive parametric forms, lead-
ing to the more accurate modeling of user interaction
distributions.

• We introduce a novel task-adaptive mechanism to cap-
ture the task relevance and incorporate task-specific
and task-relevant representations into the generation
process of decoder parameters for balancing the trade-
off between over-fitting and under-fitting in task adap-
tation.

• We conduct extensive experiments on multiple real-
world datasets in both user-specific and scenario-
specific cold-start recommendations. Empirical results
and detailed analyses validate the superiority of FANP

over its meta-learning counterparts.
The rest of this paper is organized as follows: We first

provide an overview of related works in meta learning,
cold-start recommendation and neural processes in Section
2. In Section 3, we mainly introduce some preliminaries of
modeling cold-start recommendation from the perspective
of meta learning. The formal methodology of our model
is presented in Section 4. The experimental results and
detailed analyses are reported in Section 5. Conclusions are
provided in the last section.

2 RELATED WORK

2.1 Meta Learning
Meta learning has a long development history [18] and
now becomes a hot field that leads to a flourishing recent
research. The core mechanism of meta learning is to gen-
eralize and transfer the prior knowledge learned from pre-
vious tasks to improve the model effectiveness of learning
on new tasks. Meta learning has benefited many machine
learning applications, for example few-shot learning [14],
[19], unsupervised learning [20], [21], reinforcement learn-
ing [22], [23] and automated machine learning [24], [25]. The
popular meta-learning approaches can be roughly divided
into the following categorizations [9]. (1) Gradient-based
methods [14], [26], [27] represent those where the inner task
can be solved as an optimization problem, and concentrate
on capturing the common knowledge and adapting it to
new tasks. MAML is one of the representative methods. It
aims to learn an optimization-based initialization of model
parameters, which can be efficiently adapted to new tasks
via a few steps of gradient descent. (2) Black-box amortized
methods [28], [29], [30] design black-box meta-learners, such
as recurrent neural networks (RNN), to learn model param-
eters. (3) Non-parametric methods [19], [31], [32] attempt
to perform non-parametric learning at the inner task via
learning an effective metric function. Inspired by the above
research, some works try to leverage the recent progress on
meta learning to solve cold-start recommendation.

2.2 Cold-start Recommendation
Cold-start problem has always been a serious headache for
recommendation systems since there are only a few user-
item interactions that can be exploited. We break down
existing cold-start solutions into the following research
lines. (1) Transfer learning-based methods [33], [34], [35]
leverage shared features learned from the source domain
to improve the recommendation quality in the target do-
main. (2) Hybrid methods [36], [37], [38], [39] consider how
to incorporate the content-based features extracted from
the side information into collaborative filtering (CF)-based
frameworks. For example, MTPR [38] introduces a multi-
task pairwise ranking framework to optimize item embed-
dings, consisting of normal and counterfactual represen-
tations for minimizing the training-testing discrepancy of
cold-start items. CLCRec [39] proposes a contrastive learn-
ing approach that maximizes the mutual information be-
tween user and item collaborative embeddings and between
content representations and collaborative embeddings. (3)
Meta learning-based methods [12], [40], [41] consider a
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learning-to-learn process over multiple training tasks to op-
timize global knowledge, so as to rapidly adapt to a new
recommendation task. Actually, in order to learn shared
features, transfer learning-based methods require abundant
of interaction data in the source domain which is not easily
to meet demand. Hybrid methods and meta learning-based
methods have their own pros and cons. Concretely, hybrid
methods can handle the hard cold-start situation where
new entities have no interactions that can be exploited,
while meta learning-based methods still require a very
few interactions to achieve task adaptation. The application
scope of hybrid methods is constrained, because the useful
side-information is not easily accessed due to the issue of
personal privacy [5]. Meta learning-based methods therefore
provide an alternative methodology to alleviate cold-start
problems, which focus on learning the global knowledge
among tasks and lower the standard of side-information.
We concentrate on meta learning-based methods in this
paper and leave designing a unified model that combines
the advantages of both hybrid and meta learning-based
methods as our future work.

The pioneering meta learning-based study [10] provides
a task-dependent strategy to generate the individual bias in
decision layer for handling different tasks, but this design
is proved to be underfitting when modeling complex rec-
ommendation scenarios [11]. MeLU [12] is built upon the
framework of MAML. During the inner-loop update, MeLU
would only update the model parameter of user preference
estimation according to the item-consumption history in the
support sets. Afterwards, it updates all model parameters
by backpropagating the loss on the query sets in the outer-
loop update. Through the inner-outer update fashion, MeLU
provides a shared model initialization from which a good
empirical performance for the new task can be achieved via
a few steps of gradient descent.

The follow-up works, e.g. MetaCS [11], MetaHIN [41]
and MAMO [40] have proposed different improved so-
lutions but still keep the MAML backbone. S2Meta [13]
handles the scenario-specific cold-start problem by pro-
ducing an initialization learner, a update controller and a
stop controller, all of which ensure that the meta-learning
recommender can adapt to new recommendation scenarios.
Instead of adopting MAML-like frameworks, CMML [15]
designs three neural network-based modules to aggregate
context features into task-level features, with the goal of
adapting the recommender model to new tasks. But CMML
lacks theoretical properties to illustrate that it can better
learn the global knowledge across different tasks. Overall,
exploiting meta learning to solve cold-start recommendation
is still a open problem at the current stage.

2.3 Neural Processes

Neural Processes (NPs) are neural network-based formu-
lations that learn an approximation of stochastic pro-
cesses [16], [42], [43]. They keep the advantage of deep
neural networks (DNNs) to achieve function approxima-
tions effectively. At the mean time, conditioned on the
observed training data, NPs can quickly infer the predictive
posterior distribution of new data at the test time. NPs
have demonstrated the superior performance on a range

of downstream applications, including low-dimension func-
tion regression [44], image classification [45] and Bayesian
optimisation [46].

NPs are closely related to meta learning, since NPs
provide an ideal paradigm of adapting to incoming data
points by estimating the predictive posterior distribution
conditioned on observed data points. However, the initial
results of NPs for solving few-shot problems are unsatisfac-
tory, which have been demonstrated in previous works [42],
[47]. To improve the performance of few-shot image clas-
sification, CNAPS [47] designs a modulation mechanism
where the parameters of classifiers are modulated by an
adaptation network. In the meantime, MetaFun [48] con-
siders infinite-dimensional functional task representations
with an iterative update in function space to further raise
model effectiveness. TaNP [1] is the first work that exploits
NPs to solve cold-start problems. TaNP is highly efficient
since it avoids inner-loop gradient operations and possi-
ble training issues in MAML. Nevertheless, TaNP imposes
strong model bias on the latent variable which largely limits
model effectiveness. Compared with above works, we focus
on designing a more flexible meta-learning framework from
a normalization flow viewpoint [49]. This intrinsic connec-
tion between them enables us to enjoy more freedom for
modeling more complex variational distributions.

3 PRELIMINARY

In this section, we first present a problem formulation of
how to solve cold-start recommendation from the view of
meta learning. We choose user-specific cold-start recom-
mendation and scenario-specific cold-start recommendation
to validate the effectiveness and generalization ability of
FANP, so we then provide some basic backgrounds of these
two practical problems.

3.1 Meta-learning View
Following the traditional setting of meta learning, there are
three key concepts: task, meta-training phase and meta-test
phase which are defined as follows,

Definition 1. (Task). Given the user set U , the item set V , a
user subset Ui ⊆ U and an item subset Vi ⊆ V , denote Pi as
the Cartesian product of Ui and Vi, i.e., Pi = Ui × Vi. Given
a small subset PS

i ⊆ Pi and another subset PQ
i ⊆ Pi\PS

i , a
task τi consists of a support set Si and a query set Qi, built
upon PS

i and PQ
i respectively. Specifically, the support set Si

includes very few interactions between users and items, denoted
by Si := {(x̃u,v, ỹu,v)}(u,v)∈PS

i
, where x̃u,v denotes a user-item

pair (u, v) ∈ PS
i and ỹu,v is user u’s rating for item v. Similarly,

the query set Qi := {(x̃u,v, ỹu,v)}(u,v)∈PQ
i

contains the data
samples required to be predicted. Here we denoteNSi := |PS

i | and
NQi := |PQ

i |. To simplify notation without causing confusion,
we also represent each τi as τi := {(xi,j , yi,j)}Ni

j=1 where xi,j
can be regarded as the j-th user-item pair in PS

i ∪P
Q
i , yi,j is the

corresponding rating, and Ni = NSi
+NQi

.

Definition 2. (Meta-training phase). Given a set of training
tasks denoted as T tr, and the true ratings of both Si and Qi

for each task τi ∈ T tr, meta-training phase adopts an episodic
manner, where the meta-learning recommender would first be

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3304839

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 08,2023 at 06:41:13 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

updated on each support set (learning step) and is then improved
via the prediction loss on several query sets (learning-to-learn
step). The goal of meta-training phase is to enable the meta-
learning recommender to capture the global knowledge shared by
different tasks via multiple episodic iterations.

Definition 3. (Meta-test phase). Given another set of test tasks
denoted as T te, the goal of meta-test phase is to evaluate the
model performance of the learned meta-learning recommender via
predicting the query sets of all tasks in T te. Specifically, when
a test task τi ∈ T te (a cold-start user or scenario) comes, the
meta-learning recommender attempts to predict the labels for
Qi conditioned on a very few interactions in Si and the global
knowledge derived from T tr.

From above definitions, we can find that meta learning
is suitable to solve cold-start problems where only very
limited interactions of cold-start entities are available. In
addition, influenced by the concrete rating value of yi,j ,
we can either formulate recommendation as a classification
problem to demonstrate whether ui engages with vj or a
regression problem that vj has different ratings that need to
be evaluated by ui.

3.2 User/scenario-specific Setups

User-specific cold-start recommendation refers to making
personal recommendation for a new registered user who has
only a few interactions with items. Scenario-specific cold-
start recommendation [13] is also a very practical require-
ment. Each scenario corresponds to a purchase theme in
e-commerce platforms, e.g., ”how to dress up yourself on a
party” and ”things to prepare when a baby is coming”. Since
a large number of consumption scenarios are long-tailed, the
user feedback of most scenarios is very limited. For example,
most scenario-specific promotions, such as cosmetics related
scenarios, would finish within a few hours, and it is unlikely
to collect sufficient user interactions for model training.

Definition 1 is a general definition to describe different
cold-start problems. In particular, given a specific user ui ∈
U , letting Ui := {ui} and Vi := V , the task τi is the user-
specific recommendation of ui; given a scenario set C and
a specific scenario Ci ∈ C that can be viewed as a set of
related items, letting Ui := U and Vi := Ci, the task τi is
the scenario-specific recommendation of Ci. Since this paper
focuses on these two kinds of problems, we use the symbol
τi to unify user-specific and scenario-specific tasks. The used
notations are summarized in Appendix A.

4 METHODOLOGY

In this section, we first give a detailed description of han-
dling cold-start recommendation from the perspective of
NPs. Afterwards, we analyse two significant drawbacks
in the current NP framework and introduce the proposed
FANP to jointly solve them. FANP mainly includes three
parts: the flow-based encoder, the relevance module and
the adaptive decoder. The flow-based encoder is to estimate
the flexible variational distributions via the designed con-
ditional normalization flow. The relevance module and the
adaptive decoder form our task-adaptive mechanism. The
goal of the relevance module is to learn the relevance of

different tasks and generate task-specific and task-relevant
representations. The adaptive decoder uses the above disen-
tangled task representations to generate model parameters
via the proposed modulation-augmented hypernetwork.
The flexibility of our model lies in that we provide a general
strategy for variational inference of posterior distributions
of latent variables in NP frameworks, so that the proposed
model can better to match the true distribution of compli-
cated user behaviors instead of simple Gaussians. In the
concrete implementation, we introduce a new flow-based
encoder that transforms the original latent variable into a
more expressive one via the proposed conditional normal-
ization flow. Building upon that, we design an alternative
regularization that uses the maximum mean discrepancy to
estimate the distance between two non-Gaussian posterior
distributions. The overall training framework of our model
is shown in Figure 1.

4.1 Overview

Our fundamental model assumption is that each task τi =
{(xi,j , yi,j)}Ni

j=1 is associated with a stochastic process Fi

from which the observed interactions are drawn. Given an
instantiated function f sampled from Fi, the joint distribu-
tion ρ can be defined as follows,

ρxi,1:Ni
(yi,1:Ni

) =

∫
p(f)p(yi,1:Ni

|f, xi,1:Ni
)df. (1)

Here p denotes the abstract probability distribution over all
random quantities. xi,1:Ni and yi,1:Ni respectively represent
{xi,j}Ni

j=1 and {yi,j}Ni
j=1 decoupled from τi. Motivated by

NPs, we approximate this stochastic process Fi via a latent
variable zi and some non-linear functions parameterized by
DNNs. The complete generation process is given as follows,

p(yi,1:Ni
|xi,1:Ni

) =

∫
p(zi)

Ni∏
j=1

p(yi,j |xi,j , zi)dzi. (2)

Mathematically, there are two properties required for
defining a valid stochastic process via its finite-
dimensional marginal distributions: exchangeability and
consistency [50]. The detailed descriptions of these two
properties are listed in Appendix B. In later we discuss how
to approximate these properties in our implementation.

In Eq.(2), the true posterior is typically intractable. There-
fore, we use the amortized inference [51], [52] to approxi-
mate it. We define the variational posterior distribution of
zi as q(zi|τi) and the final evidence lower-bound (ELBO)
objective can be calculated as follows,

logp(yi,1:Ni
|xi,1:Ni

) = logp(yi,1:NQi
|xi,1:NQi

, Si)

≥ Eq(zi|τi)
[NQi∑
j=1

logp(yi,j |xi,j , zi) + log
q(zi|Si)

q(zi|τi)
]

= Eq(zi|τi)
[NQi∑
j=1

logp(yi,j |xi,j , zi)
]
−DKL

(
q(zi|τi)||q(zi|Si)

)
.

(3)

Since our goal is to predict the true labels of Qi, here
we reformulate the generative distribution as modeling the
conditional of Qi given Si. The prior distribution p(zi|Si)
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is also intractable, so we use another variational posterior
distribution q(zi|Si) to approximate it. This ELBO objective
induces a log-likelihood function used for making predic-
tions on Qi based on the learned zi and a regularization
term that minimizes the Kullback-Leibler (KL) divergence
between q(zi|τi) and q(zi|Si). Maximizing Eq.(3) would
reduce the discrepancy between q(zi|τi) and q(zi|Si) so
that we can approximate the property of consistency. For
enabling NPs to represent the distribution over functions,
we add the random variability of interaction sequence to τi
as suggested by [16].

4.1.1 Remarks
From the above overview, we can find that NPs are easy
to extend to learn multiple tasks with different stochastic
processes simultaneously. By leveraging zi learned from Si,
we can directly produce the posterior predictive distribution
of Qi. This nice characteristic is quite in line with the
intrinsic idea of meta learning. However, there are still
two drawbacks that largely limit model effectiveness: (1)
In NP framework, the distribution forms of both q(zi|τi)
and q(zi|Si) are restricted as simple multivariate Gaussians.
Such reparameterization-based operation produces a strong
model bias that enforces a non-informative prior distribu-
tion on zi resulting in the inflexibility of fully capturing
the diverse user behaviours [53], [54], [55]. (2) Both the
encoder used for approximating q(zi|τi) and q(zi|Si) and
the decoder used for estimating the likelihood function
p(yi,j |xi,j , zi) are globally shared by all tasks, so this frame-
work is easy to be under-fitting when handling complex
tasks. If we simply try task-specific adaptations to improve
model capacity, the risk of over-fitting would increase when
handling simple tasks. To better balance the trade-off be-
tween over-fitting and under-fitting in task adaptation, it
is important to capture the task relevance for providing a
more fine-grained task-adaptive mechanism. In this paper,
we propose the FANP to jointly overcome these problems.

4.2 Initial Embeddings
This part aims to generate the initial dense embeddings of
users and items. Considering the side-information is not al-
ways available, here we provide two embedding strategies.
Taking generating the user embedding ui for example, if we
can have access to categorical contents of ui, ui is generated
by concatenating all content embeddings together. Given n
user contents, the embedding generation is given as follows,

ui =
[
E1ιi,1|...|Enιi,n

]
. (4)

Here [·|·] denotes a concatenation operation, ιi,n is the one-
hot encoding of the n-th categorical content for ui, and En

represents the n-th embedding matrix. When user contents
are not available, ui is calculated by:

ui = σ(W2σ(W1ei + b1) + b2), (5)

where {W1,W2} denotes weight matrices, {b1, b2} denotes
bias vectors, σ(·) is the sigmoid activation function, and ei
is the one-hot encoding of ui. The generation of initial item
embeddings follows the same calculation process with sep-
arate model parameters. We highlight that some CF-based
methods [56], [57] or graph neural networks (GNNs) [58],
[59] can also be used to generate user and item embeddings.

4.3 Flow-based Encoder

The goal of our encoder is to produce the variational
distributions q(zi|Si) and q(zi|τi) for estimating the true
posterior distributions. To approximate the property of
exchangeability, we perform an aggregation operation on
the interaction set to generate the permutation-invariant
representation ri. Concretely, for each interaction (xi,j , yi,j),
we first concatenate the user embedding ui, the item embed-
ding vj and the label information yi,j together to generate
the interaction embedding ri,j , i.e., ri,j = [ui|vj |yi,j ]. We
then aggregate all interaction embeddings in Si or τi to
obtain ri. Taking approximating q(zi|τi) for example, ri is
generated by the following operation:

ri = ri,1 ⊕ ri,2 ⊕ ... ri,Ni−1 ⊕ ri,Ni . (6)

Here ⊕ represents a commutative operation and we use
the mean aggregator for quick calculation, that is, ri =
1
Ni

∑Ni

j=1 ri,j . NPs adopt the reparameterization trick [52]
to convert ri into a Gaussian random variable, i.e., zi ∼
N (µi,diag(σ

2
i )) where µi and diag(σ2

i ) represent the mean
vector µi and the diagonal covariance matrix, respectively.
However, as mentioned in section 4.1.1, this simple choice
of Gaussian distribution is unable to tackle complex user
behaviours, which hinders model effectiveness to some
extent.

4.3.1 Non-Gaussian Transformation
In order to derive a more flexible NP framework, we in-
troduce the non-Gaussian transformation for constructing
the variational distribution q(zi|Si). Recently, normalizing
flows [49], [60], [61] provide a new paradigm of generative
model, which allow a more flexible way of density estima-
tion and data sampling. The basic idea is to start off with an
initial random variable with a simple distribution, and then
applying a chain of invertible transformation such that the
final iteration has a more flexible distribution. Furthermore,
when the Jacobian determinant of each transformation can
be quickly computed, the probability density function of this
flexible distribution is also convenient to calculation.

Motivated by the advancement of normalizing flows,
we propose a conditional normalizing flow to generate zi.
Different from most unconditional posterior distributions
for variational inference [55], [62], we consider a conditional
posterior of zi, where conditioning is established by making
sure that each transformation is a non-linear bijective func-
tion of observed user interactions. We first reparameterize
ri as a Gaussian base distribution q(z0

i |Si) by the following
operation:

r′i = ReLU(Wsri),

µi = Wµr
′
i, logσi = Wσr

′
i,

z0
i = µi+ϵ⊙ σi, ϵ ∼ N (0, I).

(7)

Here ⊙ represents the element-wise product, ϵ is the Gaus-
sian noise and {Ws,Wµ,Wσ} are weight matrices. After-
wards, z0

i is transformed by L layers of invertible functions
{glθ}Ll=1 to a more flexible posterior distribution q(zi|Si):

z0
i |Si

g1
θ←→ z1

i |Si
g2
θ←→ z2

i |Si · · ·
gL
θ←→ zL

i |Si. (8)
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Here we denote that zL
i equals zi. As suggested by [60],

we adopt the neural autoregressive model MADE [63] as
the invertible function to ensure that the determinant of the
Jacobian of each transformation can be quickly computed.
The l-th step of this conditional normalizing flow is given
as follows,

zl
i = µl

i + zl−1
i ⊙ σl

i, (9)

where this autoregressive model glθ takes zl−1
i and its hid-

den state as input, and outputs µl
i and σl

i. g
l
θ is designed

to be autoregressive of zl−1
i , and the Jacobian dzl

i

dzl−1
i

is only

triangular with σl
i on the diagonal so that the determinant

equals to
∏d

j=1 σ
l
i,j . Here d denotes the dimension size of

latent variable. By incorporating this flow into Eq.(25), the
objective function is redefined as follows,

Eq(zi|τi)
[NQi∑
j=1

logp(yi,j |xi,j , zi)
]
−DKL

(
q(zi|τi)||q(zi|Si)

)
= Eq(zi|τi)

[NQi∑
j=1

logp(yi,j |xi,j , zi)
]
− Eq(zi|τi)log(q(zi|τi))

+ Eq(zi|τi)log(q(zi|Si))

= Eq(zi|τi)
[NQi∑
j=1

logp(yi,j |xi,j , zi)
]
+Hq(zi|τi)(zi)

+ Eq(zi|τi)log(q(z
0
i |Si))−

L∑
j=1

log det
∣∣∣ dzl

i

dzl−1
i

∣∣∣.
(10)

Here Hq(zi|τi)(zi) denotes the entropy of q(zi|τi). The chain
of transformation of zi in Eq.(8) enables us to calculate the
log-likelihood of latent variable zi over the base distribution
q(z0

i |Si) rather than the complicated posterior q(zi|Si). In
the optimization process, another variational posterior dis-
tribution q(zi|τi) tries to match this flow-based distribution
q(zi|Si) and vice-versa so that the above Eq.(10) can be
maximized.

Furthermore, we also consider to apply this non-
Gaussian transformation to q(zi|τi) via this shared autore-
gressive model. This is a non-trivial problem since zi gen-
erated from q(zi|τi) has no direct dependency relationship
with the one in posterior distribution. Fortunately, in our NP
framework, zi is preceded by the data sampling of τi or Si

for modeling function distribution, which means that zi can
support fast sampling. In addition, instead of calculating the
concrete value, our goal is actually to minimize the distance
between q(zi|τi) and q(zi|Si). Therefore, we propose a max-
imum mean discrepancy (MMD)-based penalty to approx-
imate the KL regularization between q(zi|τi) and q(zi|Si)
in Eq.(25). Concretely, for a positive-definite reproducing
kernel h : Z × Z → R, the penalty is defined as follows,

MMDh

(
q(zi|τi)||q(zi|Si)

)
=

∣∣∣∣ ∫
Z
h(z, ·)dq(zi|τi)−

∫
Z
h(z, ·)dq(zi|Si)

∣∣∣∣
Hh
,

(11)

where Hh represents a reproducing kernel Hilbert space
(RKHS) of real-valued functions. h is chosen as the radial

basis function kernel. Replace KL term in Eq.(25) with this
penalty, we get an alternative objective function as follows,

logp(yi,1:NQi
|xi,1:NQi

, Si) ∝

Eq(zi|τi)
[NQi∑
j=1

logp(yi,j |xi,j , zi)
]
−MMDk

(
q(zi|τi)||q(zi|Si)

)
.

(12)

4.4 Relevance Module
This module attempts to capture the relevance of different
tasks. The main difficulty lies in that the arrival of tasks
follows an episodic manner so that we cannot obtain all task
representations at once for learning the task relevance. To
overcome this, we introduce a globally shared storage pool
A with a task recognition network mϕ. The goal of mϕ is
to generate a task-specific representation ti from Si. It first
encodes each user interaction (xi,j , yi,j) as an interaction
embedding ti,j via the following operation:

ti,j = mH
ϕ (mH−1

ϕ (· · ·m1
ϕ([ui|vj |yi,j ]))). (13)

Here mϕ is parameterized as a fully-connected DNN with
H stacked layers. The encoded interaction embeddings
{ti,j}

NSi
j=1 are then aggregated into ti via the same operation

in Eq.(6). The storage pool A = [a1, · · · ,ak] ∈ Rd′×k is a
globally shared matrix that stores k soft clustering centroids
and d′ is the dimension size of each centroid embedding.
Each task-specific representation ti would interact with A
to learn clustering assignments. The Student’s t-distribution
is used as a kernel function to calculate the normalized
similarity between ti and aj as follows,

ci,j =
(1 + ||ti − aj ||2/α)−

α+1
2∑

j′(1 + ||ti − aj′ ||2/α)−
α+1
2

. (14)

Here α is the degree of freedom of the Student’s t-
distribution. In this way, each task has access to A, and
the learned clustering assignments of different tasks can
indicate the task relevance among them in an efficient
manner. Here we define the task-relevant representation as
oi := AcTi . Notice that the original operation used in TaNP
generates a mixed task representation via summarizing ti
and oi together. But this mixed task representation cannot
distinguish the task-specific and task-relevant information,
which is less desirable to improve adaptation performance.
In this paper, we disentangle the original task representation
into ti and oi, enabling us to measure their individual effects
on task adaptation.

We construct a normalized assignment matrix of all
training tasks C = [c1, ..., c|T tr|] ∈ R|T tr|×k, and impose
an unsupervised clustering loss Lu on it. The concrete
operation is defined as follows,

Lu = KL(D||C) =
∑
i

∑
j

Di,j log
Di,j

Ci,j
. (15)

D is an auxiliary clustering target distribution for guiding
the assignment matrix C, which can be described as follows,

Di,j =
(Ci,j)

2/
∑

i Ci,j∑
j′(Ci,j′)2/

∑
i Ci,j′

. (16)
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Fig. 1: The framework of FANP in the training phase. FANP includes the flow-based encoder, the relevance module and the
adaptive decoder. Our encoder includes two ways of generating variational posterior which correspond to two loss functions for
substituting the original KL regularizations.

This clustering loss can help us to improve clustering purity
and put more emphasis on tasks with high confidence.

4.4.1 Extending to Pool Set
In the above calculation process, the task-relevant represen-
tation oi is derived from the storage pool A. To reduce the
data variance of a single pool for estimating the task rele-
vance, we further extend A to a set form, i.e., A := {Aκ}.
Each Aκ is a differentiable matrix that represents an inde-
pendent aspect. We adopt different initializations for each
matrix Aκ inAwhich are shown in Appendix C. According
to Eq.(14), we can obtain a set of normalized clustering
assignments, i.e., {cκi } and calculate a set of task-relevant
representations {oκ

i } where each oκ
i = Aκ(cκi )

T . The final
task-relevant representation in the setting of the storage pool
set is defined as oi =

∑
κ o

κ
i .

4.5 Adaptive Decoder

The conditional likelihood p(y|x, z) in above ELBOs is real-
ized as the decoder fω in amortized inference for making
predictions on the query sets. However, fω is a globally
shared module which lacks of an effective task-related adap-
tation. In this section, we introduce a adaptive decoder fωi

to achieve this purpose. Our fωi
explicitly incorporates the

disentangled representations ti and oi into task adaptation.
The intuition is that using the task-specific representation
ti to generate decoder parameters may lead to adaptation
over-fitting since such an operation does not take task
relevance into account; while only using the task-relevant
representation oi may be insufficient for adaptation of dis-
tinctly different tasks.

To better balance the trade-off between over-fitting and
under-fitting in task adaptation, we propose a modulation-
augmented hypernetwork (MAHN). It includes a shared
hypernetwork [64] ψ(·) to achieve the task-specific adap-
tation and a novel gating feature-wise linear modulation
(GFiLM) that derives the task-relevant constraint to prevent

fωi
from over-fitting. For the l-th layer in fωi

, we first use ψ
to generate layer-wise model parameters:

{W l
i , b

l
i} = ψ(ti), (17)

where {W l
i , b

l
i} represents the weight matrix and the bias

vector for the task i. ψ is parameterized by a fully-connected
DNN. Afterwards, GFiLM uses oi to generate γl

i and βl
i for

realizing the task-relevant constraint of the l-th layer:

γl
i = tanh(W l

γoi), β
l
i = tanh(W l

βoi),

ηl
i = tanh(W l

ηoi), δ
l
i = σ(W l

δoi),

γl
i = γl

i ⊙ δli + ηl
i ⊙ (1− δli),

βl
i = βl

i ⊙ δli + ηl
i ⊙ (1− δli),

(18)

where {W l
γ , W l

β , W l
η , W l

δ} are four weight matrices, and
ηl
i and δli are two gating parameters used to filter some

information which may have negative effects on learning.
tanh(·) is a non-linear function that restricts the output of
modulation to be in [−1, 1]. Finally, the output of the l-th
layer is

f l+1
i,j = ReLU(γl

i ⊙ (W l
i f

l
i,j + bli) + βl

i). (19)

f l+1
i,j is scaled and shifted by γl

i and βl
i, which absorbs the

learned task relevance into the final output. The input of
fωi

in the first layer is the concatenated vector of xi,j and
zi, i.e., f1

i,j = [ui|vj |zi].

4.6 Loss Function

To fit with different interaction feedbacks in both user-
specific and scenario-specific recommendations, we provide
different loss functions to fulfill the log-likelihood term
in Eq.(10) which are shown in Appendix D. We denote
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Lr,i := −Eq(zi|τi)logp(yi,1:NQi
|xi,1:NQi

, zi), and the total
training loss of FANP is defined as:

L =
1

|T tr|

|T tr|∑
i=1

(Lr,i + Lc,i) + λLu, (20)

where Lc,i can be referred as the flow-based log-likelihood
term in Eq.(10) or the MMD-based penalty in Eq.(12), both of
which are used to substitute the original KL regularization.
λ is a harmonic factor which is tuned between 0 and 1. The
pseudo code of the both training and test procedures are
provided in Appendix E.

4.7 Time Complexity
In this section, we analyse the time complexity of MAML-
based recommenders and our model. This analysis only con-
siders the classic MAML-based methods, such as MeLU [12]
and MetaCS [11], because the follow-up works have higher
time complexity. We denote pf and pb as the time complexity
of DNNs in forward and backward backpropagations, re-
spectively. There are n tasks that need to be fed into DNNs,
and MAML-based methods requires v gradient steps in the
inner-loop update. In the test phase, MAML-based methods
have to perform forward and backward backpropagations
for n tasks at each gradient step, resulting in O(nv(pf +pb))
time complexity. For our model, it only requires forward
backpropagation so that the time complexity of FANP is
O(npf ). Due to the fact that pb is typically larger than
pf , so FANP is about 2v times faster than MAML-based
recommenders.

In the training phase, the calculation process of MAML-
based methods is more complex, because it needs to calcu-
late the Hessian-vector products in the whole gradient paths
in the inner-loop updates [15] leading to 5 times slower than
the first-order gradient calculation [65]. Therefore, the time
complexity of them is O(nv(pf +5pb)), while the time com-
plexity of FANP is O(n(pf + pb)). From above analyses, we
can conclude that although MAML-based methods brings
promising performance improvements, the inner-loop gra-
dient update is a time consuming procedure. In contrast,
FANP is a more lightweight and flexible framework.

5 EXPERIMENTS

In this section, we seek to answer the following major
research questions (RQs):

• RQ1: Do our methods achieve the better performances
in comparison with other meta-learning recommenders,
including 1) the classic cold-start models and CF-based
models, 2) the MAML-based models, 3) the meta-
learning models without gradient updates for both
user-specific and scenario-specific cold-start recommen-
dations?

• RQ2: What is learned by our relevance module? Can
the proposed soft-clustering strategy well capture the
relevance of different tasks?

• RQ3: Except from recommendation performance, how
is the model efficiency of our models?

• RQ4: What is the impact of other designs of
permutation-invariant operations and of adaptation
strategies?

• RQ5: How sensitive is our model with respect to the
main hyper-parameters?

• RQ6: When the number of interactions in support set
for each task is reduced in the test phase, is our model
still able to achieve fast adaptation?

5.1 Experimental Settings
5.1.1 Datasets
We evaluate our model on MovieLens-1M2, Last.FM3,
Gowalla4, Amazon-Book5 and Taobao6. The first four
datasets are used for user-specific cold-start recommenda-
tion, and the last dataset is used for scenario-specific cold-
start recommendation. The detailed statistics of these real-
world recommendation datasets are shown in Appendix F.

5.1.2 Evaluation Metrics
To evaluate the recommendation performance, four
common-used metrics: Precision (P)@N, Normalized Dis-
counted Cumulative Gain (NDCG)@N, Mean Average Preci-
sion (MAP)@N and Recall@N are adopted. For each metric,
the average results of all users in the test set are reported.
We carry out paired t-test to verify whether the results
are statistically significant. We run 10 experiments for each
result by changing random seeds and the mean value is
reported.

5.1.3 Compared Baselines
For the user-specific cold-start recommendation, we se-
lect the following state-of-the-art baselines for comparison:
PPR [66], NeuMF [67], DropoutNet [68], MetaLWA [10],
MetaNLBA [10], MeLU [12], MetaCS [11], MetaHIN [41],
MAMO [40], CMML [15] and TaNP [1]. Following the pre-
vious works [13], [15], we consider the following baselines
for the scenario-specific cold-start recommendation: Item-
Pop [56], CoNet [6], s2Meta [13], CMML and TaNP. The
descriptions of these baselines are given in Appendix G.

5.1.4 Implementation Details
In the user-specific cold-start recommendation, we follow
the suggestions in TaNP to implement baselines. Since
MetaLWA and MetaNLBA are only suitable to implicit
feedback datasets, so their results of MovieLens-1M are not
provided. The meta-paths used in MetaHIN are constructed
by the node types of users, so we only report its result on
MovieLens-1M. MAMO is also closely related to the side-
information of user and items, because it uses the user
content and the profile memory to calculate the attention
values. We replace this calculation with the original mem-
ory mechanism for deploying MAMO on implicit feedback
datasets. CMML is implemented by ourselves according to
the guidance of literature. In the scenario-specific cold-start
recommendation, ItemPop and CoNet are also implemented
by ourselves, and the code of s2Meta is provided by the
authors. We follow the hyper-parameter settings of them
in [13], [15].

2. https://grouplens.org/datasets/movielens/1m/
3. https://grouplens.org/datasets/hetrec- 2011/
4. http://snap.stanford.edu/data/loc-gowalla.html
5. http://jmcauley.ucsd.edu/data/amazon/
6. https://tianchi.aliyun.com/dataset/dataDetail?dataId=9716
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TABLE 1: Performance (%) comparison on MovieLens-1M in the user-specific cold-start recommendation.

Model P@5 NDCG@5 MAP@5 P@7 NDCG@7 MAP@7 P@10 NDCG@10 MAP@10
PPR 50.73 66.08 38.44 52.07 67.10 39.35 54.90 67.75 41.89

NeuMF 49.70 65.08 37.33 52.18 66.26 38.93 54.71 67.85 42.01
DropoutNet 51.30 68.74 42.50 52.33 70.17 44.98 58.60 71.44 46.50

MeLU 55.27 72.37 46.10 56.90 72.39 49.55 61.56 73.24 48.81
MetaCS 54.79 71.38 44.90 56.41 72.12 44.69 59.49 73.14 47.62

MetaHIN 57.32 73.19 47.21 58.27 73.66 49.06 61.15 74.57 49.86
MAMO 58.29 73.66 48.02 58.98 74.63 50.12 61.57 75.11 50.64
CMML 57.24 73.32 47.56 58.31 73.45 49.02 61.70 73.89 50.28
TaNP 59.70 74.75 49.10 60.55 74.99 50.11 62.75 75.38 51.33
FANP 60.92 76.48 51.34* 61.62 77.37* 51.92* 63.90 77.85 52.79*

FANP-M 61.16* 76.59* 50.87 62.13* 76.94 51.63 64.27* 77.93* 52.34
Improve 2.44 ↑ 2.46 ↑ 4.56 ↑ 2.61 ↑ 3.17 ↑ 3.61 ↑ 2.42 ↑ 3.38 ↑ 2.84 ↑

* indicates that the improvements are statistically significant for p < 0.05 judged by paired t-test.

TABLE 2: Performance (%) comparison on Last.FM in the user-specific cold-start recommendation.

Model P@5 NDCG@5 MAP@5 P@7 NDCG@7 MAP@7 P@10 NDCG@10 MAP@10
PPR 67.94 66.56 61.32 72.56 68.78 66.85 80.79 72.16 74.90

NeuMF 67.44 64.73 59.14 70.72 67.43 66.91 80.79 71.77 77.06
DropoutNet 69.81 69.05 62.93 72.78 69.54 68.71 81.58 72.95 78.24
MetaLWA 68.76 70.01 63.07 73.18 71.32 70.09 85.78 74.75 82.19

MetaNLBA 70.92 71.89 65.43 74.39 72.99 71.28 85.49 78.27 83.10
MeLU 72.64 74.55 66.85 76.10 74.83 72.23 86.27 80.50 84.47

MetaCS 73.52 74.96 68.33 76.02 75.76 71.87 86.47 80.01 84.31
MAMO 73.90 75.21 68.10 76.95 75.11 73.46 87.23 80.16 83.97
CMML 73.30 75.17 67.44 75.94 75.91 72.20 86.52 79.89 83.45
TaNP 75.76 75.90 70.50 77.95 77.30 75.41 87.98 81.02 84.77
FANP 77.53* 77.70 71.98 80.34 79.74 77.83 89.25 82.60* 86.83

FANP-M 77.01 77.92* 72.70* 79.50 80.03* 78.10 88.84 82.18 87.32
Improve 2.34 ↑ 2.66 ↑ 3.12 ↑ 3.07 ↑ 3.53 ↑ 3.57 ↑ 1.33 ↑ 1.95 ↑ 3.01 ↑

* indicates that the improvements are statistically significant for p < 0.05 judged by paired t-test.

For making fair comparisons, the dimension sizes of
user and item embeddings are fixed as 32 in the setting
of user-specific cold-start recommendation. As suggested
by [13], the user and item embeddings are generated by
GraphSAGE [69] in the scenario-specific cold-start setting.
Both the degree of freedom α in Eq.(14) and the margin used
in Eq.(28) are fixed as 1.0. The number of stacked layers for
gθ , mϕ and fωi is selected from {2, 3, 4, 5}. The learning rate
is selected from {1e-5, 5e-5, 1e-4, 5e-4, 1e-3}. The harmonic
factor λ in Eq.(20) is selected from {1.0, 0.5, 0.1, 0.05, 0.01}.
The number of soft clustering controids k ranges from 10 to
50 with the step length 10.

5.2 Performance Comparison (RQ1)

Tables 1, 2, 3 and 4 demonstrate the results of user-specific
cold-start recommendation. The best performances are in
bold. The result of scenario-specific cold-start recommenda-
tion is provided in Figure 2. We denote the model variant
that applies non-Gaussian transformation to the posterior
distribution q(zi|τi) with the MMD penalty as ‘FANP-M’.
From these results, we have the following conclusions:

• In the user-specific cold-start recommendation, our
models, i.e., FANP and FANP-M consistently yield
the best performances. Compared with MAML-based
recommenders, the most obvious improvements are
listed here: for MovieLens-1M, FANP brings 6.9%
improvements in terms of MAP@5; FANP achieves
6.4% result lifts in terms of MAP@5 on Last.FM; For

Gowalla, FANP provides 7.3% improvements in terms
of MAP@5; For Amazon-Book, FANP-M brings 8.8%
improvements in terms of MAP@5.

• In the scenario-specific cold-start recommendation, our
model is also superior to other popular recommenders.
Concretely, compared with the previous state-of-the-
art model CMML, the most obvious improvement is
that FANP brings 5.1% improvements in terms of Re-
call@20. In contrast with MAML-based recommenders
and CMML, our NP framework is therfore more suit-
able to solve cold-start recommendation.

• TaNP is the strongest baseline. We show the improve-
ments and statistical significance test between TaNP
and ours. It is notice that our models achieve con-
sistent and significant improvements compared with
TaNP. The most obvious one is that FANP brings 4.6 %
improvements in terms of MAP@5 on MovieLens-1M.
It validates the effectiveness of the proposed flow-based
encoder and adaptation mechanism.

5.3 Visual Analysis (RQ2)
In the relevance module, our model contains a soft-
clustering strategy to learn the relevance of different tasks.
The task-specific representation ti would interact with A to
derive a set of soft clustering assignments {cκi }. We choose
one of soft clustering assignments from {cκi }, and respec-
tively select 10 tasks from the training set of MovieLens-
1M and the test set of Last.FM. Particularly, the test result
of Last.FM also represents some case studies of cold-start
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TABLE 3: Performance (%) comparison on Gowalla in the user-specific cold-start recommendation.

Model P@5 NDCG@5 MAP@5 P@7 NDCG@7 MAP@7 P@10 NDCG@10 MAP@10
PPR 60.20 62.31 52.58 61.40 63.79 57.16 62.18 65.86 60.14

NeuMF 56.73 58.92 51.46 59.15 61.74 54.28 61.22 64.09 56.81
DropoutNet 61.51 65.26 55.18 62.84 66.51 56.60 65.30 67.49 60.14
MetaLWA 64.92 65.07 55.36 66.29 66.38 57.80 69.39 66.04 59.97

MetaNLBA 66.45 67.52 59.06 67.64 68.59 61.62 70.31 70.05 62.34
MeLU 67.49 69.10 60.20 69.72 68.63 63.31 70.55 71.70 63.82

MetaCS 66.34 67.15 58.32 68.11 67.50 60.39 69.11 70.14 62.21
MAMO 68.32 69.65 61.49 70.79 70.88 63.21 71.55 72.71 64.33
CMML 68.33 68.30 62.01 70.19 70.20 63.12 70.54 72.21 65.08
TaNP 71.45 70.88 64.39 72.29 72.44 65.68 72.87 74.20 66.24
FANP 72.52* 72.76* 65.70 73.50 73.95 66.80 74.41* 75.26 68.66

FANP-M 71.73 72.58 65.97 73.71* 74.09* 66.53 73.97 75.98* 67.90*
Improve 1.50 ↑ 2.65 ↑ 2.45 ↑ 1.96 ↑ 2.28 ↑ 1.71 ↑ 2.11 ↑ 2.40 ↑ 3.65 ↑

* indicates that the improvements are statistically significant for p < 0.05 judged by paired t-test.

TABLE 4: Performance (%) comparison on Amazon-Book in the user-specific cold-start recommendation.

Model P@5 NDCG@5 MAP@5 P@7 NDCG@7 MAP@7 P@10 NDCG@10 MAP@10
PPR 56.08 59.21 46.16 60.37 63.24 53.70 61.12 63.70 54.83

NeuMF 55.74 58.90 45.71 58.80 61.24 51.82 60.39 62.12 53.71
DropoutNet 61.32 63.50 50.76 62.50 64.92 55.70 65.17 66.08 58.10
MetaLWA 62.57 67.12 55.30 66.51 68.60 58.49 69.82 69.74 60.90

MetaNLBA 66.03 69.88 57.40 68.73 71.71 59.55 70.84 73.45 62.83
MeLU 67.69 73.04 59.72 70.20 73.78 63.03 72.13 76.29 64.70

MetaCS 67.50 73.11 59.36 70.15 74.09 62.70 72.14 76.74 65.20
MAMO 68.72 74.32 60.18 70.63 74.80 63.66 71.94 77.45 66.50
CMML 68.33 73.75 61.07 70.92 75.18 63.75 72.33 77.20 66.17
TaNP 70.80 75.63 63.04 72.15 76.62 65.33 74.58 78.75 67.61
FANP 72.49* 76.24 65.46* 74.26 77.42 67.52* 76.71 80.60* 69.82*

FANP-M 72.05 76.88* 65.05 74.41 78.07* 67.19 76.90 80.37 69.38
Improve 2.39 ↑ 1.65 ↑ 3.84 ↑ 3.13 ↑ 1.89 ↑ 3.35 ↑ 3.11 ↑ 2.35 ↑ 3.27 ↑

* indicates that the improvements are statistically significant for p < 0.05 judged by paired t-test.

Item
Pop CoN

et
s^2
Me
ta
CM
ML TaN

P
FAN

P

FAN
P-M

19

20

21

22

23

24

25

26

27

28

R
ec
al
l

21.68

20.44

25.62 25.81
26.24

27.13
26.66

(a) Recall@20

Item
Pop CoN

et
s^2
Me
ta
CM
ML TaN

P
FAN

P

FAN
P-M

30

32

34

36

38

40

42

44

R
ec
al
l

35.74

31.55

42.17 42.27 42.5
43.49 42.97

(b) Recall@50

Item
Pop CoN

et
s^2
Me
ta
CM
ML TaN

P
FAN

P

FAN
P-M

35

40

45

50

55

60

R
ec
al
l

38.42

43.95

58.3 58.71 59.53 60.25 60.73

(c) Recall@100

Fig. 2: Performance (%) comparison on Taobao in the scenario-specific cold-start recommendation.

users. The visual results are shown in Figure 3. From them,
we can conclude:

• Our model can capture the task similarity. For example,
in the sub-figure (a), τ2 and τ10 are similar, because both
of them assign high normalized scores to the fourth and
fifth clustering centroids.

• Our model can also capture the task difference. For
instance, in the sub-figure (b), τ5 and τ9 are quite
different with each other, since they assign high normal-
ized scores to different clustering centroids. The similar
phenomenon can be also observed from τ2 and τ6 in the
sub-figure (a).

5.4 Runtime Comparison (RQ3)
In this section, we conduct the runtime comparison between
our methods and several strong meta-learning models in
terms of training time and test time. Figure 4 shows the
empirical results. From them, we can observe that:

• Compared with our methods, MAML-based models are
much more time-consuming. Taking MeLU for exam-
ple, it is about 3.6 times slower than FANP and about
8.9 times slower than FANP in terms of training time
and test time, respectively. As mentioned above, we
suppose the main reason lies in complicated inner-loop
gradient updates.

• CMML and TaNP do not require gradient updates, and
they are comparable with our methods in both training
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Fig. 3: Visualization results of soft clustering.
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Fig. 4: Runtime comparison (in seconds) on Last.FM.

time and test time. However, as shown in the previ-
ous sections, their empirical performances on the user-
specific and scenario-specific cold-start recommenda-
tion are inferior to our methods. Therefore, our methods
achieve a better trade-off between model efficiency and
model effectiveness.

5.5 Model Variants (RQ4)
We consider two types of model variants w.r.t. the
permutation-invariant operation (PIO) in the flow-based
encoder and the adaptation strategy (AS) in the adaptive
decoder. The selected base model and dataset are FANP
and Last.FM. The empirical results are provided in Table 5.
We highlight the better variant results compared with the
performance of FANP in Table 2.

5.5.1 Permutation-invariant Operation
In addition to the mean function, we try other permutation-
invariant operations. As suggested by [69], we adopt the
element-wise max-pooling aggregator and the LSTM aggre-
gator [70] to define Eq.(6), respectively. Similar to the mean
function, the max-pooling is also a symmetric vector func-
tion. In contrast, the LSTM aggregator is more expressive
than the mean aggregator and the max-pooling aggregator,
but LSTM handles data inputs in a sequential manner so
that it is naturally permutation invariant. According to the
operation in [15], [69], we randomly permutate the support
set for enabling the LSTM aggregator to be agnostic to the
order information. We use ‘(m)’ and ‘(l)’ to denote our
models armed with the max-pooling aggregator and the
LSTM aggregator, respectively. From Table 5, we have the
following conclusions:
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Fig. 5: Hyper-parameter sensitivities with regards to λ and k.
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• The performance of the mean aggregator is slightly
better than the one in the max-pooling aggregator.

• Compared with the mean aggregator, LSTM aggregator
brings marginal improvement. Since LSTM aggregator
is actually a more complicated operation, keeping the
mean aggregator in Eq.(6) is therefore also advisable.

5.5.2 Adaptation Strategy
To verify the effectiveness of the proposed modulation-
augmented hypernetwork, we compare it with FiLM [71],
GFiLM [1] and hypernetwork [64], [72]. We use ‘(F)’ ,
‘(G)’ and ‘(H)’ to denote these corresponding variants. In
concrete implementations, the task-specific representation
ti is exploited to generate adaptation parameters. We can
observe that these adaptation variants are inferior to our
modulation-augmented hypernetwork. Learning the disen-
tangled representations, i.e., ti and oi can balance the trade-
off between over-fitting and under-fitting in task adaptation
for improving model performance.

5.6 Hyper-parameter Analysis (RQ5)
In this section, we study the parameter sensitivity of our
model in terms of two hyper-parameters, i.e., the harmonic
factor λ in the loss function and the number of soft clus-
tering centroids k in the storage pool A. The experiment is
conducted on Last.FM and the metric is selected as P@10.
The result is provided in Figure 5, from which we can ob-
serve that: FANP achieves the best result when λ = 0.1 and
k = 10, and FANP-M achieves the best result when λ = 0.1
and k = 20. Thus, it is better to choose relative small values
for λ and k. Compared with FANP, the result fluctuation
of FANP-M is smaller in most cases. It demonstrates that
FANP-M is robust to the changes of λ and k.
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TABLE 5: Performance (%) comparison of of model variants.

Type Model P@5 NDCG@5 MAP@5 P@7 NDCG@7 MAP@7 P@10 NDCG@10 MAP@10

PIO FANP (m) 77.19 77.41 71.47 79.63 79.56 77.50 88.72 82.24 86.55
FANP (l) 77.61 77.65 72.14 80.13 80.13 77.75 89.36 82.77 87.02

AS
FANP (F) 76.41 77.25 70.97 77.88 77.63 75.54 88.34 80.86 85.32
FANP (G) 76.80 77.54 70.83 78.12 78.05 75.72 88.70 81.03 85.75

FANP-M (H) 76.27 76.93 70.45 77.69 77.75 75.59 88.02 80.34 84.86

5.7 Impact of Interaction Number (RQ6)
We change the number of interactions in the support set
i.e., NSi to test the effectiveness of our method. We select
Gowalla and P@10 as the test dataset and metric. NSi is
set as 10 and 15 respectively. The result is provided in
Figure 6. From it, we can conclude that our models still
yield better performance compared with other strong meta-
learning models, when the number of interactions in the
support set has been reduced.

6 CONCLUSION

In this paper, we present a new neural process model termed
as FNAP for solving cold-start recommendation. FNAP
includes a flow-based encoder to derive the flexible vari-
ational inference of latent variables which avoids the pre-
vious strong model bias of Gaussian distributions. On top
of that, we introduce a task-adaptive mechanism enabling
the modeling of task relevance and the customizing task-
related decoder parameters for estimating personalized user
preferences. FNAP can be free from complicated the inner-
loop gradient updates with good model efficiency, because
it is composed of feed-forward operations and can be opti-
mized by amortized variational inference straightforwardly.
Extensive experiments and analyses demonstrate that FANP
outperforms several state-of-the-art meta-learning recom-
menders.
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APPENDIX A
USED NOTATIONS

To make a clear understanding of used symbols in this
paper, we summarize used notations in Table 6.

TABLE 6: Summary of used notations.

Notation Definition or Description
U and V the user set and item set

C the scenario set
T tr and T te the training task set and test task set
τi, Si and Qi task i, support set i and query set i

Ni the number of interactions in τi
NSi

and NQi
the numbers of interactions in Si and Qi

xi,j and yi,j the user-item pair and the rating
ρxi,1:Ni

(yi,1:Ni
) the joint distribution of {yi,j}Ni

j=1 in τi
p(yi,1:Ni

|xi,1:Ni
) the generative distribution of {yi,j}Ni

j=1
zi the latent variable for τi

p(zi) and p(zi|Si) two prior distributions
p(yi,j |xi,j ,zi) the likelihood function

q(zi|τi) and q(zi|Si) two variational posterior distributions
ιi,n the one-hot content vector of ui
En the shared matrix in embedding layers
gθ the autoregressive model
h the kernel function in the MMD penalty
mϕ the task recognition network

A and A the storage pool and pool set
C the clustering assignment matrix
D the clustering target distribution
ti the task-specific representation
oi the task-relevant representation
ψ the shared hypernetwork
fωi the adaptive decoder for τi

γl
i , βl

i, η
l
i and δli the feature modulation parameters of

fωi for the l-th layer

APPENDIX B
THEORETICAL DERIVATION

In this section, we provide a detailed theoretical properties
and proofs of our methods. We introduce two necessary
conditions for defining a valid stochastic process and a
detailed derivation of ELBO objective.

B.1 Exchangeability and Consistency

Given a set of joint distribution, exchangeability and con-
sistency are two necessary conditions to define a stochas-
tic process as stated by the Kolmogorov Extension The-
orem [50]. The concrete definitions of them are given as
follows,
Property 1 : Exchangeability. This property requires that the

joint distribution ρ is invariant to element permutation
in x1:N

7. Concretely, for a finite number N , if π repre-
sents a sequence permutation of {1, . . . , N}, we have:

ρx1:N
(y1:N ) := ρx1,...,xN

(y1, . . . , yN ) =

ρxπ(1),...,xπ(N)
(yπ(1), . . . , yπ(N)) =: ρπ(x1:N )(π(y1:N )),

(21)

where π(x1:N ) := (xπ(1), . . . , xπ(N)) and π(y1:N ) :=
(yπ(1), . . . , yπ(N)).

Property 2 : Consistency. This property requires that when
marginalizing out a partial sequence the new marginal

7. We omit the previous subscript i for notation simplicity.

distribution is same to the one defined on the original
sequence. Concretely, if 1 ≤ m ≤ N , we have:

ρx1:m
(y1:m) =

∫
ρx1:N

(y1:N )dym+1:N . (22)

B.2 ELBO Objective
In Eq.(2), the true posterior is typically intractable. There-
fore, we use the amortized inference [51], [52] to approxi-
mate it. We define the variational posterior distribution of zi
as q(zi|τi) and the evidence lower-bound (ELBO) objective
can be calculated as follows,

logp(yi,1:Ni |xi,1:Ni) = log

∫
p(zi, yi,1:Ni |xi,1:Ni)dzi

= log

∫
p(zi, yi,1:Ni |xi,1:Ni)

q(zi|τi)
q(zi|τi)

dzi

≥ Eq(zi|τi)
[
log

p(zi, yi,1:Ni
|xi,1:Ni

)

q(zi|τi)
]

= Eq(zi|τi)
[
log

p(zi)p(yi,1:Ni
|xi,1:Ni

, zi)

q(zi|τi)
]

= Eq(zi|τi)
[ Ni∑
j=1

logp(yi,j |xi,j , zi) + log
p(zi)

q(zi|τi)
]
.

(23)

Since the final goal of our meta-learning recommender is
to predict the true labels of Qi in the meta-test phase, we
reformulate the above ELBO as follows,

logp(yi,1:NQi
|xi,1:NQi

, Si)

≥ Eq(zi|τi)
[NQi∑
j=1

logp(yi,j |xi,j , zi) + log
p(zi|Si)

q(zi|τi)
]
.

(24)

This prior distribution p(zi|Si) is also actually in-
tractable, so we use another variational distribution q(zi|Si)
to approximate it. This gives the following objective:

logp(yi,1:NQi
|xi,1:NQi

, Si)

≥ Eq(zi|τi)
[NQi∑
j=1

logp(yi,j |xi,j , zi) + log
q(zi|Si)

q(zi|τi)
]

= Eq(zi|τi)
[NQi∑
j=1

logp(yi,j |xi,j , zi)
]
−DKL

(
q(zi|τi)||q(zi|Si)

)
.

(25)

In our model, we use the proposed flow-based encoder
to derive the more flexible distribution q(zi|Si) (FANP) or
q(zi|τi) (FANP-M) with the MMD penalty.

APPENDIX C
INITIALIZATION OF POOL SET

In our method, each Aκ in A owns a separate initialization
strategy, since we attempt to take multiple aspects into
consideration. The following three initializations (κ = 3)
are used:

• Glorot initialization [73]. This is a classic strategy of
model initialization where each element is sampled
from a uniform distribution with a scale value.

• Gaussian Distribution. We use the zero-mean Gaussians
with different variances to initialize each vector in Aκ.
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Algorithm 1 The training procedure.

Input: User set U , item set V , scenario set C, user and item
side-information (optional), training task set T tr and
hyper-parameters: d, d′, L, H , k, α, λ, γ.

Output: Weight matrices in embedding layer, autoregres-
sive model gθ , task recognition network mϕ, storage
pool set A and adaptive decoder fωi .

1: Initialize model parameters via the xavier initialization.
2: while not convergence do
3: for τi ∈ T tr do
4: Generate user embeddings and item embeddings

via Eq.(4) or Eq.(5).
5: Generate the permutation-invariant representation

ri in Eq.(6).
6: Calculate the flow-based posterior q(zi|Si) via gθ in

Eq.(7)-Eq.(9).
7: Calculate the variational posterior q(zi|τi) via the

reparameterization trick in Eq.(7) or gθ in Eq.(7)-
Eq.(9).

8: Generate the task-specific and task-relevant repre-
sentations ti and oi viamϕ andA in Eq.(13)-Eq.(16).

9: Use ti and oi to adapt fωi via Eq.(17)-Eq.(19).
10: Make predictions on Qi via fωi , zi, ti and oi.
11: Calculate the prediction loss Lr,i according to dif-

ferent settings in Eq.(26)-Eq.(28).
12: Calculate the regularization loss Lc,i in Eq.(10) or

Eq.(12).
13: end for
14: Calculate the clustering lossLu in Eq.(15) and the total

loss L in Eq.(20).
15: Update all model parameters.
16: end while

• Pre-trained initialization. We first pre-train a two-tower
architecture introduced in Section 4.2 to generate user
and item embeddings on the training data. Then, we
select the k

2 most frequent user embeddings and the k
2

most frequent item embeddings to form Aκ.

APPENDIX D
LOG-LIKELIHOOD IMPLEMENTATIONS

In the setting of user-specific cold-start recommendation,
we consider two loss functions for explicit and implicit
feedback, respectively. For explicit feedback, we consider a
regression loss to fulfill the likelihood term in Eq.(10):

Lr,i = −Eq(zi|τi)logp(yi,1:NQi
|xi,1:NQi

, zi)

∝ 1

NQi

NQi∑
j=1

(yi,j − ŷi,j)2,
(26)

where ŷi,j is the output of fωi
(xi,j , zi, ti). For implicit

feedback data, Lr,i is defined as a cross-entropy loss:

Lr,i = −Eq(zi|τi)logp(yi,1:NQi
|xi,1:NQi

, zi)

∝ − 1

NQi

NQi∑
j=1

yi,j log(ŷi,j) + (1− yi,j)log(1− ŷi,j).

(27)

Algorithm 2 The test procedure.

Input: User set U , item set V , scenario set C, user and item
side-information (optional), test task set T te, weight
matrices in embedding layer, autoregressive model gθ ,
task recognition network mϕ, storage pool set A and
adaptive decoder fωi .

Output: Predictions of all query sets in T te.
1: for τi ∈ T te do
2: Generate user embeddings and item embeddings via

Eq.(4) or Eq.(5).
3: Generate the permutation-invariant representation ri

in Eq.(6).
4: Calculate the flow-based posterior q(zi|Si) via gθ in

Eq.(7)-Eq.(9).
5: Generate the task-specific and task-relevant represen-

tations ti and oi via mϕ and A in Eq.(13)-Eq.(16).
6: Make predictions on Qi via fωi , zi, ti and oi.
7: end for

For the setting of scenario-specific cold-start recommen-
dation, we use the margin-based ranking loss function as
suggested by [13]. The concrete definition is given as:

Lr,i = −Eq(zi|τi)logp(yi,1:NQi
|xi,1:NQi

, zi)

∝ 1

NQi

NQi∑
j=1

[
γ + fωi(x

′
i,j , zi, ti)− fωi(xi,j , zi, ti)

]
+
,

(28)

where [x]+ denotes the positive part of x, x′i,j is a negative
user-item pair and γ is a margin.

APPENDIX E
PSEUDO CODE

In Algorithm 1 and Algorithm 2, we show the pseudo code
of the both training and test procedures in our model. Notice
that we use zi sampled from q(zi|Si) to make predictions in
the test procedure, and q(zi|τi) is served as a regularization
term of q(zi|Si) in the training procedure. Our model is an
end-to-end model which is empirically updated by Adam
optimizer [74].

APPENDIX F
DATASET DETAILS AND PRE-PROCESSING

The statistics of used datasets are introduced as follows,
• MovieLens-1M8: this dataset contains 1,000,209 rating

records for 3,706 movies from 6,040 users. MovieLens-
1M has explicit feedback ranging from 1 to 5. As used
in [12], we also leverage the side-information of both
users and items. The user contents include gender, age,
occupation and zip code. The item contents include
publication year, rate, genre, director and actor.

• Last.FM9: this dataset contains some musician listening
information records of 2k users from Last.fm online
music system. We directly use Last.FM preprocessed

8. https://grouplens.org/datasets/movielens/1m/
9. https://grouplens.org/datasets/hetrec- 2011/
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by [75]. It has been transformed into an implicit feed-
back dataset where each entry is marked as 1 indicating
the user has rated the item and sample an unwatched
item marked as 0 for this user.

• Gowalla10: this dataset is a location-based social net-
working website where users share their locations by
checking-in. We extract a part of interactions from
Gowalla. It contains 134,476 rating records for 27,237
locations from 2692 users. Gowalla has also been trans-
formed into implicit feedback dataset via the same
procedure in Last.FM.

• Amazon-Book11: this dataset is a subset of Amazon-
review which contains product reviews and metadata
from Amazon. We also extract a part of interactions
from it. The used dataset contains 421,651 rating records
for 15,872 item from 4377 users. It is also an implicit
feedback dataset.

• Taobao12: This dataset is from the click data of Cloud
Theme in Taobao recommendation system, which is
provided by [13]. Different themes correspond to differ-
ent purchase scenarios, e.g., ”what to take when travel-
ing”. This dataset includes 5,717k purchase history for
1,400k items from 700k users in 355 scenarios.

In the setting of user-specific cold-start recommendation,
the division ratio of training, validation and test sets is 7:1:2.
As suggested by previous works [12], [40], [41], we reserve
the users whose interaction history length is between 40 and
200. The number of interactions in support set NSi

is set as
a small value, i.e.,NSi

= 20, and the remaining interactions
are served as the query set. For the scenario-specific cold-
start recommendation, we follow the same setting in [15].
Only scenarios with less than 1000 but more than 100 items
are selected to guarantee the cold-start property. In the
training phase, the support set of each scenario contains 64
positive interactions and the corresponding query set has
128 interactions. The same amounts of interactions are also
randomly sampled as negative samples for both support
and query sets.

APPENDIX G
BASELINE DESCRIPTIONS

For the user-specific cold-start recommendation, we con-
sider the following baselines:

• PPR [66]: it is a classic CF-based model for solving
cold-start recommendations. PPR first constructs tensor
profiles for user-item pairs by calculating the outer
products over their individual features, and then de-
signs a regression-based model to estimate the pairwise
user preference.

• NeuMF [67]: it replaces the inner product between user
and item features with a non-linear interaction function
parameterized as a DNN. NeuMF is a strong baseline in
recommendation system but is not designed for solving
cold-start problems. We adopt it here to examine its
model effectiveness.

10. http://snap.stanford.edu/data/loc-gowalla.html
11. http://jmcauley.ucsd.edu/data/amazon/
12. https://tianchi.aliyun.com/dataset/dataDetail?dataId=9716

• DropoutNet [68]: it belongs to hybrid methods for
solving cold-start problems. It considers to apply the
dropout mechanism into input data during training for
modeling the condition of missing interactions.

• MetaLWA [10] and MetaNLBA [10]: they are the first
meta learning-based recommenders that focus on item
cold-start recommendation. They generate two class-
level prototype features to estimate item similarity.
MetaLWA introduces a linear classifier whose model
parameters are determined by the user’s interaction
history, and MetaNLBA learns a DNN where the bias
vector of each layer is task-specific.

• MeLU [12]: it is a MAML-based recommender for han-
dling cold-start problems. By using the learned param-
eter initialization, MeLU can make predictions for cold-
start users via a few steps of gradient descent.

• MetaCS [11]: it is very similar to MeLU, which also
uses MAML to estimate user preferences. The authors
propose three model variants, and we choose the best
one according to the reported results.

• MetaHIN [41] combines MAML with HINs to alleviate
cold-start problems from both model-level and data-
level. The rich semantic from HINs can provide a
finer-grained prior knowledge which benefits the fast
adaptation of new tasks.

• MAMO [40]: it is a memory-based model of MAML.
MAMO respectively designs the task-specific and
feature-specific memory matrices to solve the training
issues, such as training instability and slow conver-
gence in MAML.

• CMML [15]: it proposes a fully feed-forward architec-
ture to solve cold-start recommendation. It includes the
layer modulation and soft modularization for adapting
the prediction model to new tasks. We select CMML-
FiLM as the compared baseline.

• TaNP [1]: it is the first work that leverages the NP
framework to solve user cold-start recommendation. It
considers two adaptations to modulate model parame-
ters. We adopt TaNP (FiLM) as our baseline.

For the scenario-specific cold-start recommendation, we
consider the following competitive baselines:

• ItemPop [56]: it is a non-parameterized baseline. The
items are ranked according to the number of interac-
tions in corresponding training sets for specific scenar-
ios.

• CoNet [6]: it belongs to transfer learning-based meth-
ods for solving cold-start problem. CoNet includes the
cross connections from one base network to another
network which enables the dual knowledge can be
transferred across domains.

• s2Meta [13]: it is the first meta learning-based method
to solve the scenario-specific cold-start recommenda-
tion. It introduces the update and stop controllers to
optimize inner-loop gradient updates.

• CMML [15] and TaNP [1]: These two baselines are also
adopted in the scenario-specific cold-start setting.
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